Exploring the Challenges of Integrating Geothermal Energy in Sport Spots: A Multi Method Research Design
DOI:
https://doi.org/10.63623/krzx9063Keywords:
Energy, Sports, Geothermal energy, Renewable energy, Global warmingAbstract
Recently, the global need for renewable and sustainable energy reservoirs has gained significant momentum. Among the multiple renewable energy options, geothermal energy stands a particularly advantageous and promising option. This research provides useful information to support sustainable development via clean energy use in sports facilities. A mixed-methods is used, including a qualitative section (interview with experts and reviewing the previous papers), and two survey sections to validate the challenges. 23 experts participated in the qualitative section and initial variables were identified. There were 123 participants in survey one, and the data were analyzed by exploratory factor analysis (EFA) and there were 137 participants in survey two, and the data were used for confirmatory factor analysis (CFA). to ensure adherence to subject-to-item ratio guidelines (5:1 for EFA, 10:1 for CFA) and statistical power for robust factor analysis. The results identified six main challenges and 18 sub-challenges. It was found that financial aspects pose a key challenge, as the upfront costs of installing geothermal systems can be higher compared to traditional energy sources. Another significant challenge is the scarcity of awareness and comprehension of geothermal technology. Technical complexities, as drilling and heat exchange system design, require specialized knowledge and expertise. Some practical options are presented for establishing geothermal energy use in sport facilities, including (1) financial incentives (e.g., government subsidies, public-private partnerships), (2) awareness campaigns targeting facility managers and policymakers, (3) technical training programs for geothermal system maintenance, and (4) streamlined permitting processes to reduce bureaucratic barriers.
References
[1]Nur S, Burton B, Bergmann A. Evidence on optimal risk allocation models for Indonesian geothermal projects under PPP contracts. Utilities Policy, 2023, 81, 101511. DOI: 10.1016/j.jup.2023.101511
[2]e Silva FA, da Costa VB, dos Santos IF, Bonatto BD. Electric sector modernization in Brazil: Milestones, challenges, and prospects. Utilities Policy, 2024, 90, 101793. DOI: 10.1016/j.jup.2024.101793
[3]Safarpour A, Laleh SS, Soltani S. Identifying challenges, benefits, and recommendations for utilizing solar panels in sport stadiums: A thematic analysis. Progress in Engineering Science, 2025, 2(1), 100035. DOI:10.1016/j.pes.2024.100035
[4]Le Billon P, Kristoffersen B. Just cuts for fossil fuels? Supply-side carbon constraints and energy transition. Environment and Planning A: Economy and Space, 2020, 52(6), 1072-1092. DOI: 10.1177/0308518X18816702
[5]Wang Y, Liu Y, Dou J, Li M, Zeng M. Geothermal energy in China: Status, challenges, and policy recommendations. Utilities Policy, 2020, 64, 101020. DOI: 10.1016/j.jup.2020.101020
[6]Wang Q, Guo J, Li R, Jiang XT. Exploring the role of nuclear energy in the energy transition: A comparative perspective of the effects of coal, oil, natural gas, renewable energy, and nuclear power on economic growth and carbon emissions. Environmental Research, 2023, 221, 115290. DOI: 10.1016/j.envres.2023.115290
[7]Kulkarni N, Al-Dossari M, Tawade J, Alqahtani A, Khan MI, Abdullaeva B, et al. Thermoelectric energy harvesting from geothermal micro-seepage. International Journal of Hydrogen Energy, 2024, 93, 925-936. DOI: 10.1016/j.ijhydene.2024.10.400
[8]Rehman A, Ma H, Chishti MZ, Ozturk I, Irfan M, Ahmad M. Asymmetric investigation to track the effect of urbanization, energy utilization, fossil fuel energy and CO2 emission on economic efficiency in China: another outlook. Environmental Science and Pollution Research, 2021, 28, 17319-17330. DOI: 10.1007/s11356-020-12186-w
[9]Safarpour A, Abdalmalek AE, Soltani S. Identifying challenges for implementing hydrogen energy in sport facilities: A mixed-method study. International Journal of Hydrogen Energy, 2025, 118, 500-508. DOI: 10.1016/j.ijhydene.2025.03.243
[10]Yu C, Moslehpour M, Tran TK, Trung LM, Ou JP, Tien NH. Impact of non-renewable energy and natural resources on economic recovery: Empirical evidence from selected developing economies. Resources Policy, 2023, 80, 103221. DOI: 10.1016/j.resourpol.2022.103221
[11]Zhang Y, Li L, Sadiq M, Chien F. The impact of non-renewable energy production and energy usage on carbon emissions: evidence from China. Energy & Environment, 2023, 35(4). DOI: 10.1177/0958305X221150432
[12]Voumik LC, Ridwan M, Rahman MH, Raihan A. An investigation into the primary causes of carbon dioxide releases in Kenya: Does renewable energy matter to reduce carbon emission?. Renewable Energy Focus, 2023, 47, 100491. DOI: 10.1016/j.ref.2023.100491
[13]Fagundes TS, Marques RC. Challenges of recycled water pricing. Utilities Policy, 2023. 82, 101569. DOI: 10.1016/j.jup.2023.101569
[14]Kulkarni N, Tawade JV, Sampathi S, Hanumagowda BN, Abdelmohsen SA, Khan MI, et al. Sustainability and feasibility of low-grade heat utilization for thermoelectric systems in geothermal micro-seepages. Energy Reports, 2025, 13, 4769-4780. DOI: 10.1016/j.egyr.2025.04.033
[15]Zito AM, Clarke LE, Barlow JM, Bím D, Zhang Z, Ripley KM, et al. Electrochemical carbon dioxide capture and concentration. Chemical Reviews, 2023, 123(13), 8069-8098. DOI: 10.1021/acs.chemrev.2c00681
[16]Laleh SS, Safarpour A, Shahrak AS, Alavi SH, Soltani S. Thermodynamic and exergoeconomic analyses of a novel biomass-fired combined cycle with solar energy and hydrogen and freshwater production in sports arenas. International Journal of Hydrogen Energy, 2024, 59, 1507-1517. DOI: 10.1016/j.ijhydene.2024.02.146
[17]Kabir M, Habiba U, Iqbal MZ, Shafiq M, Farooqi ZR, Shah A, et al. Impacts of anthropogenic activities & climate change resulting from increasing concentration of Carbon dioxide on environment in 21st Century; A critical review. IOP Conference Series: Earth and Environmental Science, 2023, 1194 (1), 012010. DOI: 10.1088/1755-1315/1194/1/012010
[18]Adetona AB, Layzell DB. Diverting residual biomass to energy use: Quantifying the global warming potential of biogenic CO2 (GWPbCO2). GCB Bioenergy, 2023, 15(5), 697-709. DOI: 10.1111/gcbb.13048
[19]Laleh SS, Mousavi HS, Rabet S, Nojavan F, Yari M, Soltani S. Solar thermal assisted proton exchange membrane electrolyzer and solid oxide fuel cell system based on biomass gasification for green power and hydrogen production: Multi-objective optimization and exergoeconomic analysis. Energy Conversion and Management, 2025, 337, 119900. DOI: 10.1016/j.enconman.2025.119900
[20]Arashrad P, Sharafi Laleh S, Rabet S, Yari M, Soltani S, Rosen MA. Real-time modeling of a solar-driven power plant with green hydrogen, electricity, and fresh water production: Techno-economics and optimization. Sustainability (2071-1050), 2025, 17(8). DOI: 10.3390/su17083555
[21]Abas N, Kalair A, Khan N. Review of fossil fuels and future energy technologies. Futures, 2015, 69, 31-49. DOI: 10.1016/j.futures.2015.03.003
[22]Wang Z, Li S, Jin Z, Li Z, Liu Q, Zhang K. Oil and gas pathway to net-zero: Review and outlook. Energy Strategy Reviews, 2023, 45, 101048. DOI: 10.1016/j.esr.2022.101048
[23]Li W, Chen Z, Li M, Zhang H, Li M, Qiu X, et al. Carbon emission and economic development trade-offs for optimizing land-use allocation in the Yangtze River Delta, China. Ecological Indicators, 2023, 147, 109950. DOI: 10.1016/j.ecolind.2023.109950
[24]Siddik AB, Khan S, Khan U, Yong L, Murshed M. The role of renewable energy finance in achieving low-carbon growth: contextual evidence from leading renewable energy-investing countries. Energy, 2023, 270, 126864. DOI: 10.1016/j.energy.2023.126864
[25]Aljarrah R, Fawaz BB, Salem Q, Karimi M, Marzooghi H, Azizipanah-Abarghooee R. Issues and challenges of grid-following converters interfacing renewable energy sources in low inertia systems: A review. IEEE Access, 2024, 12, 5534-5561. DOI: 10.1109/ACCESS.2024.3349630
[26]Karduri RK, Ananth C. The economics of transitioning to renewable energy sources. International Journal of Advanced Research In Basic Engineering Sciences and Technology (IJARBEST), 2023, 10.
[27]Guo J, Mallinson DJ, Ortiz SE, Iulo LD. Collaborative governance challenges in energy efficiency and conservation: The case of Pennsylvania. Utilities Policy, 2024, 87, 101721. DOI: 10.1016/j.jup.2024.101721
[28]Yu Z, Ridwan IL, Tanveer M, Khan SA. Investigating the nexuses between transportation Infrastructure, renewable energy Sources, and economic Growth: Striving towards sustainable development. Ain Shams Engineering Journal, 2023, 14(2), 101843. DOI: 10.1016/j.asej.2022.101843
[29]Apergi M, Eicke L, Goldthau A, Kurniawan J, Schuch E, Weko S. Pathways to a sustainable electricity sector in Kenya: Challenges and transformational factors. Utilities Policy, 2024, 91, 101854. DOI: 10.1016/j.jup.2024.101854
[30]Glassley WE. Geothermal energy: renewable energy and the environment. CRC Press, 2014.
[31]Avci AC, Kaygusuz O, Kaygusuz K. Geothermal energy for sustainable development. Journal of Engineering Research and Applied Science, 2020, 9(1), 1414-1426.
[32]Younger PL. Geothermal energy: Delivering on the global potential. Energies, 2015, 8(10), 11737-11754. DOI: 10.3390/en81011737
[33]Bagher AM, Vahid M, Mohsen M. Geothermal energy. Journal of Engineering and Technology Research, 2014, 6(8), 146-150. DOI: 10.5897/JETR2014.0526
[34]Barbier E. Geothermal energy technology and current status: An overview. Renewable and Sustainable Energy Reviews, 2002, 6(1-2), 3-65. DOI: 10.1016/S1364-0321(02)00002-3
[35]Tester JW, Anderson BJ, Batchelor AS, Blackwell DD, DiPippo R, Drake EM, et al. The future of geothermal energy. Massachusetts Institute of Technology, 2006, 358, 1-3.
[36]Hein P, Zhu K, Bucher A, Kolditz O, Pang Z, Shao H. Quantification of exploitable shallow geothermal energy by using Borehole Heat Exchanger coupled Ground Source Heat Pump systems. Energy Conversion and Management, 2016, 127, 80-89. DOI: 10.1016/j.enconman.2016.08.097
[37]Safarpour A, Soltani S. How sport management can address sustainability: Creating and testing a scale. Sustainable Futures, 2025, 10, 101102. DOI: 0.1016/j.sftr.2025.101102
[38]Lund JW, Toth AN. Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 2021. 90, 101915. DOI: 10.1016/j.geothermics.2020.101915
[39]Moya D, Aldás C, Kaparaju P. Geothermal energy: Power plant technology and direct heat applications. Renewable and Sustainable Energy Reviews, 2018, 94, 889-901. DOI: 10.1016/j.rser.2018.06.047
[40]Narsilio GA, Aye L. Shallow geothermal energy: an emerging technology. Low Carbon Energy Supply: Trends, Technology, Management, 2018, 387-411. DOI: 1007/978-981-10-7326-7_18
[41]Lund JW, Boyd TL. Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 2016, 60, 66-93. DOI: 10.1016/j.geothermics.2015.11.004
[42]Brophy P. Environmental advantages to the utilization of geothermal energy. Renewable Energy, 1997, 10(2-3), 367-377. DOI: 10.1016/0960-1481(96)00094-8
[43]Shortall R, Davidsdottir B, Axelsson G. Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks. Renewable and Sustainable Energy Reviews, 2015, 44, 391-406. DOI: 10.1016/j.rser.2014.12.020
[44]Wanless L, Seifried C, Kellison T. Renewable energy source diffusion in professional sport facilities. Journal of Sport Management, 2023, 38(1), 40-52. DOI: 10.1123/jsm.2023-0081
[45]Oldmeadow E, Marinova D. Into geothermal solutions: the sustainability case for Challenge Stadium in Perth, Western Australia. Environmental Progress & Sustainable Energy, 2011, 30(3), 476-485. DOI: 10.1002/ep.10476
[46]Veleska V, Josifovski J. Open‐loop geothermal heat exchanger system for heating and cooling of the Sport arena in Skopje. ce/papers, 2018, 2(2-3), 827-832. DOI: 10.1002/cepa.773
[47]Gurgenci H, Rudolph V, Saha T, Lu M. Challenges for geothermal energy utilisation. In Thirty-Third Workshop On Geothermal Reservoir Engineering, Stanford University, SGP-TR-185. 2008.
[48]Rybach L. The future of geothermal energy and its challenges. Proceedings World Geothermal Congress, 2010, 29.
[49]Darma S, Harsoprayitno S, Ibrahim HD, Effendi A, Triboesono A. Geothermal in Indonesia: government regulations and power utilities, opportunities and challenges of its development. In Proceedings of the World Geothermal Congress, International Geothermal Association Bali, Indonesia, 2010, pp. 1-9.
[50]Bai M, Patil PA. The identification of growth barriers for exploitation of geothermal energy in China. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(22), 2482-2491. DOI: 10.1080/15567036.2012.738285
[51]Setiawan H. Geothermal energy development in Indonesia: Progress, challenges and prospect. Gas, 2014, 1, 280.
[52]Abbas T, Bazmi AA, Bhutto AW, Zahedi G. Greener energy: Issues and challenges for Pakistan-geothermal energy prospective. Renewable and Sustainable Energy Reviews, 2014, 31, 258-269. DOI: 10.1016/j.rser.2013.11.043
[53]Poernomo A, Satar S, Effendi P, Kusuma A, Azimudin T, Sudarwo S. An overview of Indonesia geothermal development-current status and its challenges. Proceedings World Geothermal Congress, 2015.
[54]Breede K, Dzebisashvili K, Falcone G. Overcoming challenges in the classification of deep geothermal potential. Geothermal Energy Science, 2015, 3(1), 19-39. DOI: 10.5194/gtes-3-19-2015
[55]De Jesus AC. Environmental benefits and challenges associated with geothermal power generation. Geothermal Power Generation, 2016, 477-498. DOI: 10.1016/B978-0-08-100337-4.00017-6
[56]Manzella A, Donato A, Gola G, Santilano A, Trumpy E. The Italian challenge for geothermal energy. Perspectives for Geothermal Energy in Europe, 2017, 127-155. DOI: 10.1142/9781786342324_0005
[57]Lichti K. Materials selection challenges for geothermal energy projects. In NACE CORROSION, 2017. NACE.
[58]Colmenar-Santos A, Palomo-Torrejón E, Rosales-Asensio E, Borge-Diez D. Measures to remove geothermal energy barriers in the European Union. Energies, 2018, 11(11), 3202. DOI: 10.3390/en11113202
[59]Anbumozhi V. Geothermal energy barriers, policies and economics in East Asia. In Sayigh, A. (eds) Transition Towards 100% Renewable Energy. Innovative Renewable Energy. Springer, Cham. 2018, pp. 11-20. DOI: 10.1007/978-3-319-69844-1_2
[60]Pan SY, Gao M, Shah KJ, Zheng J, Pei SL, Chiang PC. Establishment of enhanced geothermal energy utilization plans: Barriers and strategies. Renewable Energy, 2019, 132, 19-32. DOI: 10.1016/j.renene.2018.07.126
[61]Phi T, Elgaddafi R, Al Ramadan M, Ahmed R, Teodoriu C. Well integrity issues: Extreme high-pressure high-temperature wells and geothermal wells a review. SPE Thermal Integrity and Design Symposium, 2019. DOI: 10.2118/198687-MS
[62]Wilberforce T, Baroutaji A, El Hassan Z, Thompson J, Soudan B, Olabi AG. Prospects and challenges of concentrated solar photovoltaics and enhanced geothermal energy technologies. Science of The Total Environment, 2019, 659, 851-861. DOI: 10.1016/j.scitotenv.2018.12.257
[63]Noorollahi Y, Shabbir MS, Siddiqi AF, Ilyashenko LK, Ahmadi E. Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy. Geothermics, 2019, 77, 257-266. DOI: 10.1016/j.geothermics.2018.10.004
[64]Kabeyi MJ. Geothermal electricity generation, challenges, opportunities and recommendations. International Journal of Advances in Scientific Research and Engineering (ijasre), 2019, 5(8), 53-95.
[65]Lee I, Tester JW, You F. Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, 2019, 109, 551-577. DOI: 10.1016/j.rser.2019.04.058
[66]Acheilas I, Hooimeijer F, Ersoy A. A decision support tool for implementing district heating in existing cities, focusing on using a geothermal source. Energies, 2020, 13(11), 2750. DOI: 10.3390/en13112750
[67]Vivas C, Salehi S, Tuttle JD, Rickard B. Challenges and opportunities of geothermal drilling for renewable energy generation. GRC Transactions, 2020, 44, 904-918.
[68]Soltani M, Kashkooli FM, Souri M, Rafiei B, Jabarifar M, Gharali K, et al. Environmental, economic, and social impacts of geothermal energy systems. Renewable and Sustainable Energy Reviews, 2021, 140, 110750. DOI: 10.1016/j.rser.2021.110750
[69]Chelminski K. Climate finance effectiveness: a comparative analysis of geothermal development in Indonesia and the Philippines. The Journal of Environment & Development, 2022, 31(2), 139-167. DOI: 10.1177/10704965211070034
[70]Hu Y, Cheng H, Tao S. Opportunity and challenges in large-scale geothermal energy exploitation in China. Critical Reviews in Environmental Science and Technology, 2022, 52(21), 3813-3834. DOI: 10.1080/10643389.2021.1971004
[71]Kumar L, Hossain MS, Assad ME, Manoo MU. Technological advancements and challenges of geothermal energy systems: a comprehensive review. Energies, 2022, 15(23), 9058. DOI: 10.3390/en15239058
[72]Kang FC, Tang CA, Li YC, Li TJ, Men JL. Challenges and opportunities of enhanced geothermal systems: A review. Chinese Journal of Engineering, 2022, 44(10), 1767-1777. DOI: 10.13374/j.issn2095-9389.2022.04.07.004
[73]Zayed ME, Shboul B, Yin H, Zhao J, Zayed AA. Recent advances in geothermal energy reservoirs modeling: Challenges and potential of thermo-fluid integrated models for reservoir heat extraction and geothermal energy piles design. Journal of Energy Storage, 2023, 62, 106835. DOI: 0.1016/j.est.2023.106835
[74]Benti NE, Woldegiyorgis TA, Geffe CA, Gurmesa GS, Chaka MD, Mekonnen YS. Overview of geothermal resources utilization in Ethiopia: Potentials, opportunities, and challenges. Scientific African, 2023, 19, e01562. DOI: 10.1016/j.sciaf.2023.e01562
[75]Gunnlaugsson B, Agustsson MA, Adalsteinsson S. Sustainable use of geothermal energy in Icelandic horticulture. International Geothermal Conference, 2003, 6, 2011.
[76]Tomić N, Stojsavljević R, Stamenković I, Berić D. The use of geothermal energy resources in the tourism industry of Vojvodina (Northern Serbia). European Researcher, 2013, 42(2-3), 443-454.
[77]Barbato M, Cirillo L, Menditto L, Moretti R, Nardini S. Feasibility study of a geothermal energy system for indoor swimming pool in Campi Flegrei area. Thermal Science and Engineering Progress, 2018, 6, 421-425. DOI: 10.1016/j.tsep.2018.02.013
[78]Jónsson ÖD, Rastrick Ó. Enjoying the outdoor pool in a cold climate: Appropriate technology, utilisation of geothermal resources and the socialisation of everyday practices in Iceland. Geothermal Energy, 2017, 5, 1-14. DOI: 0.1186/s40517-017-0060-5
[79]Marić A. Conditions and possibilities of geothermal energy utilization for economic-touristic development. Зборник радова Географског института" Јован Цвијић" САНУ, 2018, 68(2), 233-248.
[80]Barbato M, Cirillo L, Menditto L, Moretti R, Nardini S. Geothermal energy application in Campi Flegrei Area: The case study of a swimming pool building. International Journal of Heat and Technology, 2017, 35(1), S102-S107.
[81]Gažíková S, Takács J, Krajčík M. Improving the efficiency of geothermal energy use for recreation and balneology: a case study of spa Kremnica. Russian Journal of Construction Science and Technology, 2018, 4(2).
[82]Alimonti C, Soldo E, DI LEGINIO L. Improvement of the energy system efficiency by a ground source heat pumps system in a sport center. In European geothermal congress 2019. The Hague, 11-14 june 2019. Proceedings 2019.EGEC. https://hdl.handle.net/11573/1341286 (accessed on 14 June 2019).
[83]Xu J, Su Z, Meng J, Yao Y, Vafadaran MS, Salavat AK. A thermodynamic, exergoeconomic, and exergoenvironmental investigation and optimization on a novel geothermal trigeneration system to sustain a sport arena. Process Safety and Environmental Protection, 2023, 177, 278-298. DOI: 10.1016/j.psep.2023.07.017
[84]Cai J, Fei J, Li L, Fei C, Maghsoudniazi M, Su Z. Multicriteria study of geothermal trigeneration systems with configurations of hybrid vapor compression refrigeration and Kalina cycles for sport arena application. Renewable Energy, 2023, 219, 119390. DOI: 10.1016/j.renene.2023.119390
[85]Braun V, Clarke V. Using thematic analysis in psychology. Qualitative Research in Psychology, 2006, 3(2), 77. DOI: 10.1191/1478088706qp063oa
[86]TTerry G, Hayfield N, Clarke V, Braun V. Thematic analysis. The SAGE Handbook of Qualitative Research in Psychology, 2017, 2(17-37), 25.
[87]Clarke V, Braun V. Thematic analysis. The Journal of Positive Psychology, 2016, 12(3), 1-12. DOI: 10.1080/17439760.2016.1262613
[88]Creswell JW, Creswell JD. Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications; 2017.
[89]Wimmer RD, Dominick JR. Mass media research: An introduction 8th ed. Belmont, CA: Thomson Higher Education. 2006.
[90]Chris G, Ian J. Research methods for sports studies. 2004: Routledge.
[91]Pasqualetti MJ. The site specific nature of geothermal energy: The primary role of land use planning in nonelectric development. Natural Resources Journal, 1983, 23(4), 795-814.
[92]Lund JW, Bjelm L, Bloomquist G, Mortensen AK. Characteristics, development and utilization of geothermal resources-a Nordic perspective. Episodes Journal of International Geoscience, 2008, 31(1), 140-147. DOI: 10.18814/epiiugs/2008/v31i1/019
[93]Paoli L, Loppi S. A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy. Environmental Pollution, 2008, 155(2), 383-388. DOI:10.1016/j.envpol.2007.11.004
[94]Thorhallsson S. Geothermal well operation and maintenance. Geothermal Training Program IGC Short Course, 2003.
[95]Parada AFM. Geothermal binary cycle power plant principles, operation and maintenance. Geothermal Training Pro-gramme Reports Orkustofnun, 2013, 20, 443-476.
[96]Halaj E. Geothermal bathing and recreation centres in Poland. Environmental Earth Sciences, 2015, 74(12) 7497-7509. DOI: 10.1007/s12665-014-3740-5
[97]Kubota H, Hondo H, Hienuki S, Kaieda H. Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs. Energy Policy, 2013, 61, 1079-1087. DOI: /10.1016/j.enpol.2013.05.084
[98]Palomo-Torrejón E, Colmenar-Santos A, Rosales-Asensio E, Mur-Pérez F. Economic and environmental benefits of geothermal energy in industrial processes. Renewable Energy, 2021, 174, 134-146. DOI: 10.1016/j.renene.2021.04.074
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ali Safarpour, Emine Altindal, Saeed Soltani, Marc A. Rosen (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.