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Abstract

The oil and gas industry is undergoing a transformative shift driven by the pursuit of operational efficiency,
environmental responsibility, and technological innovation. This review critically analyzes optimization strategies
deployed across upstream, midstream, and downstream operations. Drawing from recent advances, it explores the
integration of feedback control systems, machine learning algorithms, and digitalization tools such as digital twins and
edge computing. The review highlights how traditional PID-based control logic has evolved to support real-time
optimization, while artificial neural networks (ANNs) have emerged as effective alternatives to physics-based models,
particularly in artificial lift and reservoir management. A key finding is the centrality of robust data governance in
ensuring the reliability and sustainability of optimization outcomes. Quantitative studies confirm that digital investment,
when aligned with organizational restructuring, significantly enhances energy efficiency and production performance.
The review also identifies persistent barriers, including corporate resistance to automation and technical misalignment
between optimization layers. Emerging trends such as hybrid energy systems and multidimensional optimization
frameworks reflect the industry’s growing alignment with environmental and social sustainability goals. This synthesis
provides practical insights and a forward-looking perspective on the tools and strategies delivering measurable value in
oil and gas optimization under real-world constraints.
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1. Introduction

The oil and gas industry remains a cornerstone of global energy supply, underpinning economic development and
industrial productivity across the world. As the industry evolves, it faces intensifying demands to enhance operational
efficiency, minimize environmental impacts, and meet rising sustainability expectations across all phases of production
and distribution [1]. In response to these challenges, optimization has emerged as a fundamental engineering discipline
aimed at improving system performance and resource utilization throughout the upstream, midstream, and downstream
segments of the petroleum value chain [2]. The growing importance of sustainability metrics and energy efficiency in
oil and gas operations has been widely acknowledged in recent literature [3,4]. These studies highlight that the
integration of environmental considerations into operational strategies, such as the use of green resource planning
frameworks within oilfield microgrids, can improve reliability indices and reduce emissions across energy-intensive
processes. Against this backdrop, this review evaluates current optimization practices in the oil and gas sector, focusing
on their scientific basis, real-world applications, and the technological advancements driving this transformation. The
analysis is grounded in recent empirical studies that demonstrate the measurable benefits of advanced optimization tools.
For instance, implementation of feedback control systems has led to a four percent increase in production from gas-
lifted wells while simultaneously reducing equipment downtime and improving system responsiveness [5]. Additionally,
quantitative models based on production function analysis have established strong correlations between digital
investment and energy efficiency, offering a valuable framework for strategic resource allocation [6].

The progression of optimization methodologies reflects broader trends in industrial digitalization. Traditional
approaches, which often relied on periodic model-based simulations and steady-state assumptions [7], are gradually
giving way to data-centric methods that incorporate machine learning algorithms and Internet of Things (IoT) enabled
monitoring platforms [8]. These innovations support continuous optimization by adapting to real-time variability in
reservoir and equipment behavior, as exemplified in modern electric submersible pump (ESP) control systems [5].
Nevertheless, practical implementation challenges persist. Computational complexity remains a major barrier in the
deployment of large-scale optimization models [9], while the quality and consistency of field data continue to influence
the effectiveness of decision-making processes [10]. These issues call for a balanced optimization approach that
combines theoretical rigor with operational feasibility. Although progress has been achieved, there are notable gaps in
existing research that limit the broader adoption of intelligent optimization systems. Classical control structures, such as
those formulated in early plantwide optimization theories [11,12], emphasized the role of model-based strategies but
often did not account for the challenges posed by dynamic reservoir conditions and limited real-time data availability
[13]. While some studies have acknowledged these issues [7,9], many have not sufficiently explored how recent
advances in artificial intelligence, particularly machine learning and artificial neural networks (ANNs), can address
these limitations. Furthermore, previous contributions to the static versus dynamic optimization debate [8] have
generally excluded ANN-based control models, thereby restricting their practical relevance in today’s operational
environments.

This review builds upon these foundational studies by incorporating state-of-the-art machine learning and ANN
methods into a broader optimization framework. By synthesizing diverse strands of current research, it offers an
interdisciplinary perspective that unites fields often treated separately, including digital twins, edge computing,
predictive analytics, and data governance systems. These components are examined not as standalone innovations but as
part of an integrated strategy for advancing next-generation oilfield operations. The manuscript further explores how the
industry is leveraging these emerging technologies to respond to evolving technical, environmental, and economic
challenges. It evaluates the application of machine learning in reservoir modeling and property prediction, the
deployment of advanced control structures for production optimization, and the growing use of digital twins for
predictive asset management. By combining insights from academic literature and real-world field implementations,
this review provides actionable knowledge for engineers, researchers, and policymakers seeking to identify the most
effective optimization tools under real-world operational constraints. In doing so, it also highlights the potential areas
for future research and innovation that could enable further improvements in energy efficiency, sustainability, and
operational resilience within the global oil and gas sector.

2. Methodology

This review as displayed in Figure 1 followed a structured scoping methodology adapted from the frameworks proposed
by Arksey and O’Malley [14] and Snyder [15] to systematically map the landscape of optimization strategies in the oil
and gas sector. The approach involved a multi-phase process of identification, screening, eligibility assessment, and
thematic synthesis of relevant literature. The objective was to capture the breadth and depth of recent advancements in
optimization practices, with particular focus on automation, machine learning applications, reservoir management, and
energy efficiency. Relevant literature was sourced from peer-reviewed journals, conference proceedings, and technical
reports published between 2000 and 2025. Searches were conducted using Boolean operators across academic databases
including Scopus, IEEE Xplore, and ScienceDirect. Search terms included combinations such as “oil and gas”,
optimization”, “machine learning in reservoir”, “digital twin AND production”, and “process control AND automation”.
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Figure 1. Scoping review of optimization strategies in the oil and gas industry.

The inclusion criteria prioritized studies that reported quantitative outcomes, demonstrated real-world field
implementations, or introduced novel digital technologies applicable to upstream, midstream, or downstream oil and gas
operations. Studies were excluded if they lacked empirical validation, were limited to purely theoretical modeling, or
did not contribute substantial new insights to the optimization discourse. However, theoretical models were retained
where they introduced innovative concepts with potential for application. A total of 75+ articles were retained after
duplicate removal and relevance screening. These were thematically analyzed based on methodological rigor,
technological innovation, integration of data governance principles, and relevance to industrial practice. The final
synthesis incorporated cross-comparison of optimization domains and highlighted emerging interdisciplinary trends in
digital oilfield optimization.

3. Result and Discussion

3.1 Optimization Through Feedback Control and Automation

Process control stands as a fundamental pillar of optimization in oil and gas operations, serving both regulatory and
economic functions. For decades, conventional Proportional Integral Derivative (PID) controllers have reliably
maintained critical setpoints for pressure, temperature, and flow rates. Recent research by Krishnamoorthy et al. [5]
demonstrates how these simple feedback structures can be strategically deployed for optimal operation, often
eliminating the need for complex model-based optimization tools. They demonstrated that a carefully selected set of
controlled variables within simple feedback loops can deliver near-optimal results even under disturbances, thus
reducing reliance on computationally expensive re-optimization. Unlike AI-based systems, they emphasize the
practicality of self-optimizing control strategies that offer simpler, more transparent solutions with comparable field
performance. This finding is supported by Foss et al. [8], who showed how traditional control structures can
systematically replace more complex optimization algorithms while maintaining economic performance. The principle
of self-optimizing control provides a powerful framework for maintaining near-optimal operation without continuous
optimization interventions. As articulated by Skogestad [11] and further developed by Halvorsen et al. [13], this
approach relies on identifying controlled variables that inherently keep the process close to its economic optimum.
These concepts build upon foundational work by Morari et al. [12], who first established the theoretical connection
between feedback control and economic optimization, creating a basis for modern control strategies that remains
relevant today.

Compelling evidence from Krishnamoorthy and Skogestad [16] shows that optimal production can be achieved through
PID controllers combined with selector logic and constraint tracking mechanisms. These control architectures
dynamically redistribute control authority as operational constraints change. Darby et al. [7] further highlight how the
time required for model updates and optimization calculations often renders these approaches impractical for real-time
decision making. These limitations have driven growing interest in feedback-based approaches that can automatically
adapt to system variability, as demonstrated in field implementations [17]. Practical applications validate this approach,
demonstrating successful implementations where control systems automatically adjust gas lift allocations and manage
production under challenging conditions like gas coning [18,19]. The evolution of control system architectures
continues to expand optimization possibilities. However, traditional model-based optimization approaches face
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significant challenges in oilfield applications [19]. Campos et al. [9] observed that oil production environments
frequently exhibit dynamics and uncertainties that challenge the reliability of steady-state models.

Takacs [20] documents advanced applications in ESP systems, where sophisticated control logic maintains optimal
operating points while respecting equipment constraints. Similarly, Reyes Lúa et al. [21] have shown how
straightforward logic can optimally manage gas injection rates based on real-time well performance. These
developments reflect the industry's growing recognition of control systems as active optimization tools rather than mere
regulatory devices, marking a significant shift in operational philosophy.

3.2 Data-Driven Optimization and Machine Learning Applications

The integration of data-driven technologies, particularly ANNs and broader machine learning models, has significantly
advanced optimization capabilities across oil and gas operations. These tools offer flexible and adaptive alternatives to
traditional rule-based systems, especially in domains such as artificial lift optimization, equipment diagnostics, and
property prediction under uncertain and nonlinear conditions. At the core of ANN functionality lies a computational
architecture inspired by biological neurons, consisting of interconnected layers: input, hidden, and output nodes. Each
connection is assigned a weight that adjusts during the training phase to minimize the error between predicted and
actual outputs. Most applications in oilfield optimization employ feedforward multilayer perceptron (MLP)
architectures, trained using algorithms such as backpropagation or the Levenberg–Marquardt optimization method due
to their efficiency in handling nonlinear and noisy datasets [22]. These models are particularly effective in learning
complex relationships between operational parameters like wellhead pressure, gas injection rates, and production
volume without relying on explicit physical equations.

Model selection depends on the task. MLP is widely used for continuous function approximation, while radial basis
function (RBF) networks are preferred for pattern classification in fault detection scenarios. Support vector machines
(SVM) also find use in classification and regression tasks due to their robustness against overfitting in high-dimensional
spaces. Recent reviews suggest that hybrid models combining ANN with fuzzy logic or evolutionary algorithms further
enhance predictive performance in complex reservoir conditions. Successful deployment of Machine Language (ML)
models begins with data preprocessing. This includes outlier removal, normalization of input variables, and feature
engineering to reduce dimensionality and improve model generalization. For example, in gas lift optimization, features
such as flowline pressure, gas injection rate, and temperature are normalized and smoothed before being introduced into
the ANN model [21,23,24]. Preprocessing ensures that the network can learn relevant patterns without being misled by
noise or inconsistent measurements [25].

Training, validation, and testing of models are conducted using historical operational datasets, typically divided into
three subsets. The training phase involves adjusting network weights based on known inputs and outputs. Validation
helps to prevent overfitting by evaluating the model on unseen data during training. Final testing assesses model
performance on completely separate data. Common performance metrics include the root mean squared error (RMSE),
mean absolute error (MAE), and coefficient of determination (R²). In recent case studies, ANN models have achieved
R² values above 0.95 in gas lift optimization tasks, demonstrating their suitability for real-time field deployment [21,23].
Beyond control and diagnostics, ML and ANN techniques are increasingly used for reservoir property prediction. These
models are applied to estimate critical physical properties such as dew point pressure, bubble point pressure, gas
compressibility factor (Z-factor), formation volume factor (FVF), and crude oil viscosity. For example, advanced
models trained on pressure-volume-temperature (PVT) data have shown improved prediction accuracy of crude oil
viscosity and gas solubility, especially when using deep learning structures that incorporate physical constraints [26].
Another study demonstrated that SVM and ANN methods can accurately model FVFs across different pressure and
temperature regimes, outperforming conventional correlations [27].

The novelty of ANN and ML applications in oil and gas lies in their ability to support real-time decision-making under
uncertainty. Unlike static models that require periodic recalibration, intelligent algorithms can continuously adapt to
incoming data, improving their predictive accuracy over time. This adaptability is especially important in mature fields
with heterogeneous reservoirs and marginal wells, where traditional physics-based models often fail to account for field
dynamics [24]. Additionally, ANN systems embedded in digital twin architectures enhance operational visibility by
enabling predictive simulations and proactive maintenance planning [28,29]. Moreover, ML tools enable condition
monitoring and fault detection in critical systems such as compressors, pumps, and separators. By analyzing deviations
from learned operational baselines, ANN models can issue early warnings of equipment failure, reducing downtime and
maintenance costs [5,30]. Their ability to generalize from past patterns makes them valuable in offshore and remote
environments where manual diagnostics are limited by access or safety considerations.

3.3 Machine Learning Applications in Reservoir Property Prediction

The application of machine learning to reservoir property prediction has become a vital tool for enhancing production
forecasting, flow assurance, and overall reservoir management. Traditional empirical models often fail to capture the
nonlinear and high-dimensional dependencies that exist among pressure, temperature, and fluid behavior, particularly in
unconventional or marginal fields. In contrast, ANNs, SVMs, and hybrid intelligent systems offer flexible frameworks
capable of learning complex functional relationships directly from data, without the need for explicit physical modeling.
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Among the most frequently predicted properties using machine learning approaches are dew point and bubble point
pressures, FVF, crude oil viscosity, Z-factor, and CO₂ solubility. For instance, ANN models trained on PVT datasets
have demonstrated exceptional accuracy in predicting bubble point pressure and oil viscosity across wide operating
ranges [31,32,26]. These models are capable of generalizing across diverse geologic settings and can be retrained as
new data becomes available, which enhances their long-term utility in dynamic reservoir simulation environments.

Support vector regression and hybrid ANN-genetic algorithm models have also proven effective in modeling gas
compressibility and Z-factor, particularly in dry gas and retrograde condensate reservoirs [27]. These machine learning
methods outperform traditional correlations in terms of both accuracy and robustness, especially under extreme pressure
and temperature conditions where conventional models often fail. The advantage of data-driven models extends beyond
accuracy. These tools are highly tolerant to data imperfections, such as sensor noise, missing values, and operational
anomalies, which are common in mature and brownfield assets [10,24]. By learning from field data, these models offer
a more adaptable and scalable solution for predicting key fluid properties under varying operational scenarios. When
integrated into digital twin frameworks and real-time optimization systems, machine learning models allow continuous
updates of property estimates based on live input data. This capability enables proactive adjustments in operational
strategies, contributing to improved hydrocarbon recovery, reduced energy consumption, and better overall field
performance [6,33,34]. Such integration represents a critical step toward the realization of closed-loop, self-optimizing
oilfield systems.

3.4 Reservoir Management and Production Allocation Optimization

Reservoir management represents a critical strategic function in upstream oil and gas operations, balancing hydrocarbon
recovery optimization with economic viability and reservoir integrity preservation. This complex process coordinates
production rates, fluid injection strategies, and resource distribution across multiple wells and facilities to maximize
asset value throughout the reservoir lifecycle. As Krishnamoorthy et al. [5] demonstrated, modern reservoirs particularly
those with unconventional or heterogeneous formations demand sophisticated optimization frameworks that account for
both subsurface dynamics and surface system interactions. Production allocation presents unique optimization
challenges, requiring careful management of well interference effects, gas lift distribution, and surface processing
constraints while maintaining compliance with operational and regulatory boundaries. Traditional approaches using
iterative methods like Newton iteration often struggle with real time operational variability due to their sensitivity to
input assumptions. These limitations have driven the development of more robust optimization techniques [35]. Recent
advances in investment strategy for upstream oil and gas projects emphasize risk-aware portfolio planning techniques
that account for regulatory shifts and volatile price conditions [29,36,37]. These optimization approaches are
increasingly embedded within broader energy portfolio strategies that account for diversification, hedging trade-offs,
and integrated asset governance [38-40].

Advanced mathematical programming methods have significantly improved allocation optimization. Beckner and
Davidson [29] pioneered sequential quadratic programming approaches that incorporate nonlinear multiphase flow
dynamics and allow for penalty terms related to cost, emissions, and equipment degradation. Kosmidis et al. [35]
expanded this work through mixed integer nonlinear programming (MINLP), enabling simultaneous optimization of
well rates, lift gas allocation, and facility utilization while accurately modeling pressure drops and manifold constraints.
Their integrated approach proved particularly valuable in mature fields with complex flow networks. While powerful,
MINLP methods face computational challenges at field scale, prompting alternative approaches. Ray and Sarker [41]
developed a multi objective gas lift optimization framework that balances production volume, gas usage efficiency, and
equipment constraints while maintaining solution stability. This work has been complemented by recent machine
learning applications, such as the ANN models that predict optimal production responses by learning from historical
well behavior, enabling rapid scenario analysis without full physics simulations [21].

Marginal and brownfield developments present special optimization challenges, particularly regarding gas lift
constraints. Rashid [42] addressed these through constraint coupled algorithms that dynamically adjust injection rates
based on marginal productivity, surface capacity, and gas availability. Such approaches prove invaluable for real time
field management where operational changes require continuous strategy adjustments. Data quality and integration
remain fundamental to optimization effectiveness. Comprehensive data governance frameworks are essential for
maintaining consistency across seismic interpretations, well logs, flow measurements, and production reports. Without
such integration, optimization decisions risk being suboptimal or erroneous. Emerging decentralized approaches offer
promising alternatives to traditional centralized optimization [10,7]. Self-optimizing control structures with feedback
mechanisms can maintain near optimal operation by responding to active constraints like maximum drawdown pressure
or separator limits. These methods reduce computational burdens while improving responsiveness to system uncertainty
[5,8].

3.5 Digital Transformation for Energy Efficiency and Resource Conservation

The oil and gas industry is experiencing a fundamental transformation through the convergence of operational and
information technologies, marking its transition into the Fourth Industrial Revolution. This shift, characterized by
widespread digitalization, IoT adoption, and advanced analytics, is reshaping how companies approach energy
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efficiency and resource conservation. As Shinkevich et al. [6] demonstrated through their comprehensive study, digital
transformation serves as both an economic imperative and environmental necessity, enabling smarter resource
utilization across the petroleum value chain while addressing sustainability challenges. Using Cobb-Douglas production
functions established clear correlations between digital investments and operational improvements. Their research
revealed that strategic expenditures in automation, real-time monitoring, and cloud integration yield measurable
reductions in both energy intensity and operational costs [6]. As shown in Figure 2, strategic investments in digital
technologies exhibit a strong positive correlation with energy efficiency improvements and operational cost reductions.

Figure 2. Correlation between digital investment levels and operational efficiency based on Cobb-Douglas regression analysis.

Importantly, the study highlighted that maximum efficiency gains occur when digitalization initiatives are implemented
alongside workforce training and organizational restructuring, suggesting that human factors remain critical in digital
transformation success [1]. The foundation for effective digital optimization lies in robust data governance. Extensive
field research across South African oil operations, documenting how fragmented data systems undermine energy
efficiency efforts. His work established that integrated data management platforms are essential for maintaining
optimization benefits throughout the asset lifecycle, from exploration through production [10]. These findings were
reinforced by Darby et al. [7], who showed that standardized data architectures can reduce decision latency by up to
40% in complex operational environments. These findings are further supported by Begishev et al. [43], who argue that
the ethical, environmental, and technological implications of robotics and digital platforms must be critically assessed
alongside technical performance metrics. One of the most impactful applications of digitalization is in associated
petroleum gas (APG) management. Digital monitoring and control systems transform APG from a waste product into a
valuable resource through reinjection, power generation, or liquefaction. Modern IoT-enabled gas measurement systems
combined with adaptive control algorithms have demonstrated flare reduction efficiencies exceeding 85% in field trials.
This technological progress supports both environmental compliance and economic optimization of gas utilization [6].

As noted by Barzegar et al. [4], incorporating virtualized green resource platforms within oilfield microgrids can
enhance reliability and lower emissions, reinforcing the sustainability potential of digital optimization. Digital twin
technology represents another breakthrough in energy optimization. Documented case studies where virtual asset
replicas enabled predictive maintenance and production optimization in offshore environments. These digital twins
integrate real-time sensor data with physics-based models to simulate equipment performance under various operating
scenarios, allowing engineers to identify energy savings opportunities without physical intervention. The
implementation of these technologies spans the entire hydrocarbon value chain. In upstream operations, cloud-based
analytics platforms process drilling data to optimize well placement and completion designs. Midstream applications
include smart pipeline monitoring systems that minimize energy losses during transportation. Downstream, AI-
enhanced supervisory control and data acquisition (SCADA) systems dynamically adjust refining processes based on
real-time feedstock quality and market demands [44,45].

Edge computing has emerged as a critical enabler for remote operations. By processing data locally at production sites,
these systems maintain functionality even with limited connectivity while reducing the energy burden of continuous
cloud data transmission [22]. This capability proves particularly valuable in distributed oilfield operations where
reliable communication infrastructure may be lacking. Looking forward, the integration of renewable energy sources
into oilfield operations presents new optimization challenges and opportunities. Recent pilot projects have demonstrated
how machine learning can balance hydrocarbon production with solar or wind power generation, creating hybrid energy
systems that reduce overall carbon intensity [24]. These innovations point toward a future where digital technologies
enable the petroleum industry to meet both economic and environmental objectives.
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3.6 Data Governance and Lifecycle Integration

Optimization success depends not only on advanced algorithms but equally on the quality, accessibility, and governance
of operational data. Effective data governance establishes the framework ensuring data integrity, security, and relevance
across all operational and strategic workflows. Comprehensive data governance directly enables optimization
throughout the oil and gas production lifecycle, from exploration to abandonment. The upstream sector generates
immense volumes of structured and unstructured data through seismic interpretation, drilling operations, and real-time
equipment monitoring [10]. Continuous assessment of data quality attributes including accuracy, timeliness, and
completeness which is essential for maintaining optimization effectiveness. Their research revealed that inconsistent
data standards between departments can lead to suboptimal decisions with significant economic consequences [7,46].

Data governance framework emphasizing the synchronization of organizational processes, technological systems, and
workforce competencies. The study found that companies implementing standardized data formats and cross-functional
communication protocols achieved 30% faster decision cycles compared to those with fragmented data silos [10]. These
governance structures prove particularly valuable during critical phase transitions, such as moving from exploration to
development. Ellis et al. [47] further elaborates on the role of supplier relationship management in maintaining a
resilient and collaborative data ecosystem, emphasizing how trust-based governance models can improve optimization
performance across distributed operations. Beyond operational efficiency, robust data governance supports regulatory
compliance and environmental stewardship. Centralized data repositories enhance risk management for well integrity
monitoring and emissions reporting. When combined with real-time analytics platforms, these systems enable proactive
optimization that considers both economic and sustainability objectives [1,48].

3.7 Optimization Challenges and Human Factors

Despite remarkable technological progress, organizational and human factors continue to constrain optimization
adoption in oil and gas operations. Identified corporate culture and technical competency gaps as primary barriers, with
field operators often preferring familiar manual processes over automated optimization systems perceived as opaque or
inflexible [5]. The sustainability of optimization systems represents another critical challenge. Nearly 40% of advanced
optimization applications are abandoned within three years due to insufficient maintenance and knowledge transfer [33].
For example, in many offshore operations, model predictive control systems installed, though successfully implemented,
were later shut down due to the lack of trained personnel, poor documentation, or limited understanding of control
objectives among new operators. This attrition frequently occurs when specialized personnel depart without establishing
adequate documentation or training protocols. Similar concerns are raised in recent studies on the fragility of
optimization frameworks in volatile economic conditions. Fattahi and Nafisi-Moghadam [49] demonstrate how external
shocks such as oil sanctions reshape the interdependencies within financial systems, indirectly impacting optimization
investment and resilience strategies in the petroleum sector.

Technical misalignment between optimization and control layers can create operational vulnerabilities. Qin and
Badgwell [50] revealed how unrealistic setpoints generated by optimizers often trigger control system instability or
safety interventions. These findings underscore the need for tighter integration between optimization algorithms and
physical process constraints [44]. Effective optimization frameworks must balance computational precision with human
expertise. Mayne [51] advocated for hybrid decision-support systems that augment rather than replace operator
judgment. This approach preserves valuable operational experience while leveraging optimization capabilities, creating
a collaborative environment for improved decision-making. Harjoto et al. [52] explore how corporate social
irresponsibility, if unchecked can degrade portfolio performance and trust in optimization initiatives, particularly in
cross-national contexts.

3.8 Emerging Trends and Future Directions

The optimization landscape is evolving through cyber-physical integration, edge computing, and sustainability-driven
innovation. Autonomous operations are becoming reality through distributed sensor networks and edge-based
optimization algorithms that enable remote assets to self-adjust with minimal human oversight. Energy systems are
undergoing radical transformation as renewables integrate with conventional operations. Hybrid energy systems where
intelligent algorithms dynamically balance grid power, solar generation, and energy storage to optimize both cost and
carbon footprint which is an approach reducing emissions by up to 25% in field trials [6,53,54]. In the context of
offshore renewables, Faria et al. [46] propose stochastic portfolio optimization models that integrate risk aversion and
scenario generation, offering a viable pathway to blend oil and renewable portfolios under uncertainty. Reservoir
optimization is advancing through digital core analysis and machine learning-enhanced EOR modeling. These
technologies enable real-time updating of reservoir models, dramatically improving production forecasting accuracy for
complex formations like tight oil and fractured carbonates [8,55]. Sustainability metrics are reshaping optimization
objectives. Modern frameworks now incorporate carbon intensity, methane leakage, and water usage alongside
traditional economic indicators. This multidimensional optimization reflects the industry's growing commitment to
environmental stewardship and social responsibility [1], as described in Table 1.
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Table 1. Summary of optimization techniques and their key attributes.

Technique Application Area Advantage Limitation

PID Controllers Well control, gas lift Simplicity, reliability Not adaptive

ANNs Artificial lift, forecasting Nonlinear modeling, real-time
learning Data dependence

Digital Twins Offshore production,
maintenance

Predictive, simulation-based
insights High implementation cost

MINLPModels Production allocation Multi-constraint handling Computationally intensive

Edge Computing + IoT Remote sites, real-time
control Fast, low-latency optimization Network infrastructure

dependency
Note: Table created by the authors based on insights synthesized from the reviewed literature.

Recent global trends in oil and gas optimization reveal a concerted shift toward integrated digital operations, emissions
reduction, and cost-effective automation. Industry leaders are increasingly investing in platforms that connect real-time
data acquisition, AI-driven decision engines, and advanced reservoir simulations, as seen in several flagship projects
across North America, the Middle East, and Sub-Saharan Africa. For example, McKinsey & Company reported that
over 70% of large oil and gas operators now allocate substantial portions of capital expenditure to digital optimization
tools. In its Global Energy Perspective, McKinsey outlined how integrated planning frameworks combining drilling
schedules, logistics, and market forecasts can lead to 15-25% increases in production efficiency when backed by
intelligent automation systems [56].

In the United Arab Emirates, ADNOC (Abu Dhabi National Oil Company) has implemented a digital command center
that aggregates data from more than 120 oilfields. Using digital twin technologies and predictive maintenance
algorithms, ADNOC reported an 18% reduction in unplanned downtime and a 20% improvement in energy intensity
metrics over three years [57]. This case demonstrates the operational and environmental benefits that arise from
advanced optimization frameworks. Similarly, BP’s Statistical Review highlighted that its deployment of AI-assisted
production optimization at its Trinidad & Tobago gas operations led to increased output by 6% while reducing carbon
intensity per barrel [2]. These gains were attributed to neural network models that processed real-time reservoir pressure
and flow data to adjust compressor behavior and gas lift allocation dynamically.

In the Nigerian onshore sector, pilot projects initiated under the Nigerian Gas Expansion Program (NGEP) have
emphasized gas flaring optimization. Modular flare gas capture units, coupled with remote sensing data and economic
modeling, were deployed in the Niger Delta to evaluate reinjection versus LNG conversion options. However,
comparative cost-benefit frameworks are increasingly shaping the way optimization strategies are prioritized under
constrained resource settings [58]. While high-tech deployments dominate advanced economies, many operators in
developing countries are adopting low-cost digital retrofits. In South Africa, optimization gains were achieved through
better data governance and basic SCADA upgrades without major infrastructural overhauls [10]. These findings
underscore that optimization is scalable and adaptable depending on maturity level, resource availability, and
operational context. The global trend, therefore, supports a heterogeneous but converging movement toward smarter,
greener, and more integrated oilfield operations. Industry case studies reinforce the assertion that optimization is not a
luxury reserved for supermajors but a scalable necessity applicable across geographies and technological baselines.

4. Discussion

The analysis of optimization strategies in the oil and gas industry reveals a paradigm shift from isolated control systems
to integrated, intelligent frameworks capable of responding to real-time field complexities. This transformation is
characterized by the convergence of automation, artificial intelligence, and digital infrastructure across various
operational stages from drilling and production to maintenance and energy efficiency management. One of the dominant
trends observed in the reviewed literature is the growing application of ANNs and other machine learning techniques in
optimizing artificial lift systems and well performance. Onomuakpose et al. [23] provided compelling evidence that
ANN models trained with historical production data can predict optimal gas lift rates, wellhead pressures, and
production volumes with high accuracy, even in the presence of noisy or incomplete data. This robustness underscores
the potential of ML models to augment or even replace traditional rule-based control mechanisms in complex reservoir
environments.

Complementing this approach, Ahmed et al. [59] confirmed the effectiveness of ML models in real-time optimization
scenarios where data integrity may be compromised. Their findings align with the need for adaptive control systems
that can dynamically adjust to fluctuating conditions, a feature increasingly demanded in offshore and marginal field
operations. The integration of ANN models into decision-making frameworks also has direct implications for
production allocation and reservoir management. Kosmidis et al. [35] and Beckner and Davidson [29] emphasized the
utility of nonlinear programming and mixed-integer optimization for handling flow constraints, gas lift distribution, and
facility limitations. These advanced algorithms provide the computational backbone for maximizing net present value
(NPV) under constrained conditions. However, their practical implementation often suffers from computational
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intensity, prompting alternative strategies such as the multi-objective approaches proposed by Ray and Sarker [41],
which ensure operational robustness without sacrificing optimization quality.

Beyond individual production units, the industry is also witnessing a digital transformation geared toward sustainability
and energy efficiency. Shinkevich et al. [6] demonstrated that investments in digitalization particularly in IoT and cloud
computing correlate strongly with reduced energy consumption and increased operational efficiency. By incorporating
Cobb-Douglas regression analysis, they established that digital resource allocation is an optimization factor in its own
right, significantly influencing output in the petroleum sector. This digital shift is not merely technical but structural.
Munyai [10] emphasized the importance of data governance and lifecycle integration in enabling the success of
optimization initiatives. In his analysis of energy operations in South Africa, he revealed that fragmented or siloed data
systems severely limit the impact of digital tools, regardless of their sophistication. Therefore, optimization must be
understood not only as a technological endeavor but also as an organizational imperative requiring alignment between
data systems, workflows, and workforce capabilities.

Optimization also intersects with sustainability goals, especially in the management of APG. Rather than flaring, several
studies advocate for conversion to LNG or reinjection into the reservoir. Ren et al. [28] showed that digital integration
can aid in capturing, processing, and utilizing APG more efficiently, minimizing greenhouse gas emissions and
improving profitability. These findings are echoed by McCarthy [33], who highlighted the benefits of intelligent
automation and closed-loop systems in resource conservation. Digital twins and predictive analytics further exemplify
how optimization strategies are extending into production forecasting and maintenance planning. Dmitrievsky et al. [49]
illustrated the utility of digital twins in offshore platforms, enabling dynamic simulations of reservoir and equipment
conditions, which in turn facilitate predictive interventions and minimize downtime. These technologies are proving
critical in harsh environments where conventional monitoring systems are limited. Collectively, these contributions
illustrate that optimization in the oil and gas industry has evolved from a reactive, siloed discipline into a proactive,
integrative strategy underpinned by AI, digital infrastructure, and sustainable engineering practices. However, achieving
the full potential of these advancements will depend on addressing current barriers such as data quality inconsistencies,
skill gaps, and organizational resistance to automation.

5. Conclusion

Optimization in the oil and gas industry has evolved from marginal efficiency improvements into a comprehensive,
multi-layered approach that integrates automation, advanced analytics, and digital technologies across upstream,
midstream, and downstream operations. Feedback control systems, once limited to basic regulatory tasks, have matured
into dynamic platforms capable of real-time modulation and self-correction under variable field conditions. Artificial
intelligence (AI), and in particular ANNs, have introduced powerful modeling capabilities that enable the prediction and
control of complex nonlinear behaviors typical of reservoir and production systems. These tools provide unmatched
flexibility in handling noisy or incomplete datasets, enabling predictive maintenance, optimized gas lift allocation, and
improved recovery strategies systems offer flexibility in managing noisy or incomplete datasets, supporting predictive
maintenance, gas lift optimization, and enhanced recovery strategies. However, realizing these benefits depends on
access to high-quality real-time data, seamless integration of surface and subsurface operations, and operator confidence
in AI-driven insights. Increasing environmental responsibilities have elevated optimization to a strategic imperative,
with technologies such as digital twins, edge computing, and predictive analytics enabling closed-loop systems that
reduce emissions and improve gas utilization. This convergence of economic and environmental priorities signals a
redefinition of optimization in the modern energy context.

Despite these advances, structural barriers persist. Organizational inertia, skill shortages, and fragmented data
governance often limit the scalability and consistency of optimization efforts. Many enterprises continue to operate with
disconnected systems and insufficient cross-disciplinary collaboration, undermining long-term gains. Addressing these
challenges requires not only adopting new technologies but institutionalizing them through coordinated change
management, workforce reskilling, and inclusive system design that aligns human expertise with machine intelligence.
More so, the future of optimization lies in creating adaptive, data-driven ecosystems where operational intelligence is
embedded across the asset lifecycle. Lasting impact will come from integrated frameworks that harmonize real-time
control, AI, sustainability, and corporate governance. As digital infrastructure matures and external expectations grow,
optimization will become a foundational element of responsible and resilient energy production.

6. Future Prospects and Way Forward

The future of optimization in the oil and gas sector will be shaped by three interconnected trajectories: the rise of hybrid
AI systems, deep system integration, and alignment with sustainability imperatives. The new generation of hybrid AI
combines the strengths of multiple paradigms such as rule-based logic, statistical modeling, physics-informed
algorithms, and machine learning into unified frameworks capable of delivering higher accuracy, adaptability, and
interpretability. These systems are poised to transform industry operations by enabling predictive and prescriptive
decision-making across complex and multi-variable environments. For example, hybrid AI can integrate first principles
reservoir models with real-time production data and reinforcement learning to optimize drilling parameters, enhance
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recovery strategies, and dynamically adjust to evolving subsurface conditions. Their successful deployment will depend
on robust cybersecurity architectures, ethical AI governance, and transparent accountability frameworks to ensure
operational trustworthiness.

System integration across organizational and technological domains will remain equally vital. Unified digital platforms
that merge reservoir simulations, facility operations models, supply chain logistics, and environmental monitoring data
into cohesive and interoperable ecosystems can significantly enhance responsiveness and situational awareness.
Achieving this requires institutionalizing cross-functional collaboration among geoscientists, data scientists, control
engineers, and sustainability officers, ensuring that hybrid AI solutions can seamlessly exchange information and adapt
to new inputs without loss of performance continuity. Sustainability alignment will represent the most urgent and
transformative priority. Future optimization strategies must align with global climate goals by embedding
environmental performance targets such as Scope 1 and 2 emissions reduction, methane abatement, carbon capture and
storage (CCS), and water use efficiency directly into AI-driven decision-making algorithms. Hybrid AI, with its
capacity to reconcile economic objectives like NPV with environmental and social impact metrics, offers a pathway to
achieving this balance. Governments and regulatory agencies should incentivize innovation by funding pilot projects
that integrate hybrid AI into low-carbon oil and gas operations, while fostering partnerships between industry, academia,
and technology developers to accelerate knowledge transfer and field deployment.

Education and workforce development will also be critical. Training programs must equip the next generation of
engineers, data analysts, and decision makers with skills in hybrid AI design, data-centric engineering, and integrated
asset management. This approach moves beyond digitizing existing workflows to reimagining optimization as a core
driver of resilience, efficiency, and sustainability. Operators who embed hybrid AI into their technological, governance,
and cultural frameworks will be best positioned to lead in the twenty first century energy transition, turning complex
operational challenges into opportunities for innovation and competitive advantage.

Generative AI statement

The authors declare that no Gen AI was used in the creation of this manuscript.

Reference

[1] IEA P. World energy outlook 2022. Paris, France: International Energy Agency (IEA). 2022. https://www.iea.org/reports/world-
energy-outlook-2022 (accessed on 14August 2025)

[2] Statistical Review of World Energy 2023. BP p.l.c. https://www.bp.com/en/global/corporate/energy-economics/statistical-
review-of-world-energy.html (accessed on 14 August 2025)

[3] Bongers A. Energy efficiency, emission energy, and the environment. Energy Research Letters, 2020, 1(2), 13186. DOI:
10.46557/001c.13186

[4] Barzegar M, Rashidinejad M, Abdollahi A, Afzali P, Bakhshai A. An efficient reliability index for the assessment of energy
efficiency considering sitting of green virtual resources in a microgrid. Energy, 2020, 191, 116606. DOI:
10.1016/j.energy.2019.116606

[5] Krishnamoorthy D, Fjalestad K, Skogestad S. Optimal operation of oil and gas production using simple feedback control
structures. Control Engineering Practice, 2019, 91, 104107. DOI: 10.1016/j.conengprac.2019.104107

[6] Shinkevich AI, Kostyukhin YY, Savon DY, Safronov AE, Aleksakhin AV. Optimization of energy-efficient functioning of the
oil and gas sector of the economy through digitalization and resource conservation. International Journal of Energy Economics
and Policy, 2021, 11(5), 321-330. DOI: 10.32479/ijeep.11695

[7] Darby ML, Nikolaou M, Jones J, Nicholson D. RTO: An overview and assessment of current practice. Journal of Process
Control, 2011, 21(6), 874-884. DOI: 10.1016/j.jprocont.2011.03.009

[8] Foss B, Knudsen BR, Grimstad B. Petroleum production optimization–a static or dynamic problem?. Computers & Chemical
Engineering, 2018, 114, 245-253. DOI: 10.1016/j.compchemeng.2017.10.009

[9] Campos MC, Teixeira H, Liporace F, Gomes M. Challenges and problems with advanced control and optimization technologies.
IFAC Proceedings Volumes, 2009, 42(11), 1-8. DOI: 10.3182/20090712-4-TR-2008.00003

[10] Munyai TT. Optimization of oil and gas production life cycle through data management. Master’s thesis, University of
Johannesburg, South Africa, 2017. https://hdl.handle.net/10210/493120 (accessed on 14 August 2025)

[11] Skogestad S. Plantwide control: The search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5),
487-507. DOI: 10.1016/S0959-1524(00)00023-8

[12] Morari M, Arkun Y, Stephanopoulos G. Studies in the synthesis of control structures for chemical processes: Part I:
Formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing
control structures. AIChE Journal, 1980, 26(2), 220-232. DOI: 10.1002/aic.690260205

[13] Halvorsen IJ, Skogestad S, Morud JC, Alstad V. Optimal selection of controlled variables. Industrial & Engineering Chemistry
Research, 2003, 42(14), 3273-3284. DOI: 10.1021/ie020833t

[14] Arksey H, O'malley L. Scoping studies: towards a methodological framework. International Journal of Social Research
Methodology, 2005, 8(1), 19-32. DOI: 10.1080/1364557032000119616

[15] Snyder H. Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 2019, 104,
333-339. DOI: 10.1016/j.jbusres.2019.07.039

[16] Krishnamoorthy D, Skogestad S. Online process optimization with active constraint set changes using simple control structures.
Industrial & Engineering Chemistry Research, 2019, 58(30), 13555-13567. DOI: 10.1021/acs.iecr.9b00308

Akpotu et al.

https://jies.gospub.com/jies JIES, Vol. 1, No. 1, June 2025

36



[17] Pavlov A, Krishnamoorthy D, Fjalestad K, Aske E, Fredriksen M. Modelling and model predictive control of oil wells with
electric submersible pumps. 2014 IEEE Conference on Control Applications (CCA), 2014, 586–592. DOI:
10.1109/CCA.2014.6981403

[18] Sharma R, Glemmestad B. On generalized reduced gradient method with multi-start and self-optimizing control structure for
gas lift allocation optimization. Journal of Process Control, 2013, 23(8), 1129-1140. DOI: 10.1016/j.jprocont.2013.07.001

[19] Urbanczyk CH, Wattenbarger RA. Optimization of well rates under gas coning conditions. SPE Advanced Technology Series,
1994, 2(2), 61-68. DOI: 10.2118/21677-PA

[20] Takacs G. Electrical submersible pumps manual: Design, operations, and maintenance. Gulf Professional Publishing, An
Imprint of Elsevier. DOI: 10.1016/B978-1-85617-557-9.X0001-2

[21] Reyes-Lúa A, Zotică C, Das T, Krishnamoorthy D, Skogestad S. Changing between active constraint regions for optimal
operation: Classical advanced control versus model predictive control. Computer Aided Chemical Engineering, 2018, 43, 1015-
1020. DOI: 10.1016/B978-0-444-64235-6.50178-9

[22] Zhang L. Big Data Analytics for eMaintenance: Modeling of high-dimensional data streams, Licentiate thesis, Luleå University
of Technology, Sweden. https://www.diva-portal.org/smash/get/diva2:1740800/FULLTEXT01.pdf (accessed on 14 August
2025)

[23] Onomuakpose PI, Mgbemena CO, Anaidhuno ED, Anaidhuno UP. Gas lift optimization of an oil well using artificial neural
networks (ANN). International Journal of Industrial and Production Engineering, 2025, 3(3), 1-3.

[24] Binder BJ, Kufoalor DK, Pavlov A, Johansen TA. Embedded model predictive control for an electric submersible pump on a
programmable logic controller. In 2014 IEEE Conference on Control Applications (CCA), 2014, 579–585. DOI:
10.1109/CCA.2014.6981402

[25] Elgibaly AA, Ghareeb M, Kamel S, El-Bassiouny ME. Prediction of gas-lift performance using neural network analysis. AIMS
Energy, 2021, 9(2), 355–378. DOI: 10.3934/energy.2021019

[26] Gomaa S, Soliman AA, Nasr K, Emara R, El-Hoshoudy AN, Attia AM. Development of artificial neural network models to
calculate the areal sweep efficiency for direct line, staggered line drive, five-spot, and nine-spot injection patterns. Fuel, 2022,
317, 123564. DOI: 10.1016/j.fuel.2022.123564

[27] Gouda A, Gomaa S, Attia A, Emara R, Desouky SM, El-Hoshoudy AN. Development of an artificial neural network model for
predicting the dew point pressure of retrograde gas condensate. Journal of Petroleum Science and Engineering, 2022, 208,
109284. DOI: 10.1016/j.petrol.2021.109284

[28] Ren S, Zhang Y, Liu Y, Sakao T, Huisingh D, Almeida CM. A comprehensive review of big data analytics throughout product
lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. Journal of
Cleaner Production, 2019, 210 1343-1365. DOI: 10.1016/j.jclepro.2018.11.025

[29] Davidson JE, Beckner BL. Integrated optimization for rate allocation in reservoir simulation. SPE Reservoir Evaluation &
Engineering, 2003, 6(6), 426-432. DOI: 10.2118/87309-PA

[30] Kruk M, Shabalina A. Optimization of the investment portfolio for oil and gas projects under conditions of risk and uncertainty.
Journal of Infrastructure Policy and Development, 2025, 9, 10928. DOI: 10.24294/jipd10928

[31] Okorocha IT, Chinwuko CE, Mgbemena CO, Godfrey OC, Mgbemena CE. Production optimization using gas lift incorporated
with artificial neural network. UNIZIK Journal of Engineering and Applied Sciences, 2022, 21(1), 842-858.

[32] Okorocha IT, Chinwuko CE, Mgbemena CE, Mgbemena CO. Gas lift optimization in the oil and gas production process: A
review of production challenges and optimization strategies. International Journal of Industrial Optimization, 2020, 1(2), 61.
DOI:10.12928/ijio.v1i2.2470

[33] McCarthy D. IoT and digitalization of petroleum and gas production. Pipeline and Gas Journal, 2018, 245(2), 49-51. Available
at: https://pgjonline.com/magazine/2018/february-2018-vol-245-no-2/features/iot-and-digitalization-of-oil-and-gas-production
(accessed on 14 August 2025)

[34] Wang P. Development and applications of production optimization techniques for petroleum fields, Stanford University, USA,
2003. https://pangea.stanford.edu/ERE/pdf/pereports/PhD/Wang03.pdf (accessed on 14August 2025)

[35] Kosmidis VD, Perkins JD, Pistikopoulos EN. Optimization of well oil rate allocations in petroleum fields. Industrial &
Engineering Chemistry Research, 2004, 43(14), 3513-3527. DOI: 10.1021/ie034171z

[36] Wassink C, Grenier M, Roy O, Pearson N. Deployment of digital NDT solutions in the oil and gas industry. Materials
Evaluation, 2020, 78(7), 861-868. DOI:10.32548/2020.me-04138

[37] Hause M, Ashfield S. The Oil and Gas Digital Engineering Journey. InINCOSE International Symposium, 2018, 28(1), 337-
351. DOI: 10.1002/j.2334-5837.2018.00485.x

[38] Forbes MG, Patwardhan RS, Hamadah H, Gopaluni RB. Model predictive control in industry: Challenges and opportunities.
IFAC-PapersOnLine, 2015, 48(8), 531-538. DOI: 10.1016/j.ifacol.2015.09.022

[39] Gerasimova KE, Naumova OA. Portfolio optimization technique of oil and gas company assets. Vestnik of Samara State
University of Economics, 2020, 3(185), 46-55. DOI: 10.46554/1993-0453-2020-3-185-46-55

[40] Ferriani F, Veronese G. Hedging and investment trade-offs in the US oil industry. Energy Economics, 2022, 106, 105736. DOI:
10.1016/j.eneco.2021.105736

[41] Ray T, Sarker R. Multiobjective evolutionary approach to the solution of gas lift optimization problems. In 2006 IEEE
International Conference on Evolutionary Computation, 2006, 3182-3188. DOI: 10.1109/CEC.2006.1688712

[42] Rashid K. Optimal allocation procedure for gas-lift optimization. Industrial & Engineering Chemistry Research, 2010, 49(5),
2286-2294. DOI: 10.1021/ie900867r

[43] Begishev I, Khisamova Z, Vasyukov V. Technological, ethical, environmental and legal aspects of robotics. In E3S Web of
Conferences, Vancouver, BC, Canada, 2021, 244, 12028. DOI: 10.1051/e3sconf/202124412028

[44] Gargallo P, Lample L, Miguel JA, Salvador M. Dynamic risk management in European energy portfolios: Evolution of the role
of clean and carbon markets. Energy Reports, 2022, 8, 15654-15668. DOI: 10.1016/j.egyr.2022.11.146

[45] Gupta N, Park H, Phaal R. The portfolio planning, implementing, and governing process: An inductive approach. Technological
Forecasting and Social Change, 2022, 180, 121652. DOI: 10.1016/j.techfore.2022.121652

[46] Faria VA, de Queiroz AR, DeCarolis JF. Scenario generation and risk-averse stochastic portfolio optimization applied to
offshore renewable energy technologies. Energy, 2023, 270, 126946. DOI: 10.1016/j.energy.2023.126946

Akpotu et al.

JIES, Vol. 1, No. 1, June 2025 https://jies.gospub.com/jies

37



[47] Ellis SC, Oh J, Henke JW, Suresh NC. Supplier relationship portfolio management: a social exchange perspective. Journal of
Purchasing and Supply Management, 2023, 29(1), 100816. DOI: 10.1016/j.pursup.2022.100816

[48] Fattahi S, Nafisi-Moghadam M. Do oil sanctions affect the interdependence and integration of financial markets?. Heliyon,
2023, 9(2), e13793. DOI: 10.1016/j.heliyon.2023.e13793

[49] Dmitrievsky AN, Eremin NA, Stolyarov VE. On the issue of the application of wireless decisions and technologies in the
digital oil and gas production. Actual Problems of Oil and Gas, 2019, 2(25). DOI: 10.29222/ipng.2078-5712.2019-25.art11

[50] Qin SJ, Badgwell TA. A survey of industrial model predictive control technology. Control Engineering Practice, 2003, 11(7),
733-764. DOI: 10.1016/S0967-0661(02)00186-7

[51] Mayne DQ. Robust and stochastic mpc: Are we going in the right direction?. IFAC-PapersOnLine, 2015, 48(23), 1-8. DOI:
10.1016/j.ifacol.2015.11.255

[52] Harjoto MA, Hoepner AG, Li Q. Corporate social irresponsibility and portfolio performance: A cross-national study. Journal of
International Financial Markets, Institutions and Money, 2021, 70, 101274. DOI: 10.1016/j.intfin.2020.101274

[53] Gupta V, Grossmann IE. Offshore oilfield development planning under uncertainty and fiscal considerations. Optimization and
Engineering, 2017, 18(1), 3-33. DOI: 10.1007/s11081-016-9331-4

[54] Merino J, Caballero I, Rivas B, Serrano M, Piattini M. A data quality in use model for big data. Future Generation Computer
Systems, 2016, 63, 123-130. DOI: 10.1016/j.future.2015.11.024

[55] Perrons RK, Jensen JW. Data as an asset: What the oil and gas sector can learn from other industries about “Big Data”. Energy
Policy, 2015, 81, 117-121. DOI: 10.1016/j.enpol.2015.02.020

[56] Global Energy Perspective 2023: Oil Outlook. McKinsey & Company. https://www.mckinsey.com/industries/oil-and-gas/our-
insights/global-energy-perspective-2023 (accessed on 14August 2025)

[57] Digital Transformation at Scale: ADNOC’s Panorama Command Center. Abu Dhabi National Oil Company, 2023.

costs. International Journal of Management & Entrepreneurship Research, 2024, 6(7), 2153-2161. DOI:
10.51594/ijmer.v6i7.1263

[59] Ahmad T, Alexander D. The Impact of Data Integrity on Clinical Trial Outcomes: Insights from Machine Learning

https://www.adnoc.ae/en/news-and-media/press-releases/2020/adnoc-panorama-digital-command-center-generates-over-1-
billion-in-value/ (accessed on 14 August 2025).

[58] Anaba DC, Kess-Momoh AJ, Ayodeji SA. Digital transformation in oil and gas production: Enhancing efficiency and reducing

.
ResearchGate, 2023. Available at:
https://www.researchgate.net/publication/373214558_The_Impact_of_Data_Integrity_on_Clinical_Trial_Outcomes_Insights_fr

_ _

Akpotu et al.

https://jies.gospub.com/jies JIES, Vol. 1, No. 1, June 2025

38

om Machine Learning (accessed  on 14 August 2025).

https://www.adnoc.ae/en/news-and-media/press-releases/2020/adnoc-panorama-digital-command-center-generates-over-1-billion-in-value/
https://www.adnoc.ae/en/news-and-media/press-releases/2020/adnoc-panorama-digital-command-center-generates-over-1-billion-in-value/
https://www.researchgate.net/publication/373214558_The_Impact_of_Data_Integrity_on_Clinical_Trial_Outcomes_Insights_from_Machine_Learning
https://www.researchgate.net/publication/373214558_The_Impact_of_Data_Integrity_on_Clinical_Trial_Outcomes_Insights_from_Machine_Learning

